题目内容
【题目】如图,已知:在等边△ABC中,D、E分别在AB、AC上,且AD=CE,BE、CD相交于点P.
(1)说明△ADC≌△CEB的理由;
(2)求∠BPC的度数.
【答案】(1)证明见解析;(2)120°.
【解析】
(1)由三角形ABC为等边三角形,根据等边三角形的性质可知三边相等,三内角都为60°,可得AC=CB,∠A=∠ACB=60°,又AD=CE,利用SAS的方法可得三角形ADC与三角形CEB全等;
(2)由(1)证明的两三角形全等,根据全等三角形的对应角相等可得∠ACD=∠CBE,又∠ACB=∠ACD+∠DCB=60°,等量代换可得∠CBE+∠DCB=60°,最后利用三角形的内角和定理即可求出∠BPC的度数.
解:(1)∵△ABC为等边三角形,
∴AB=BC=AC,∠A=∠ABC=∠ACB=60°,
在△ADC和△CEB中,,
∴△ADC≌△CEB(SAS);
(2)解:∵△ADC≌△CEB,
∴∠ACD=∠CBE,
又∵∠ACB=∠ACD+∠DCB=60°,
∴∠CBE+∠DCB=60°,
∴∠BPC=120°.
练习册系列答案
相关题目