题目内容

【题目】如图,,点内一点,,点分别在射线上,当的周长最小时,下列结论:①;②;③的周长最小值为24;④的周长最小值为8;其中正确的序号为__________

【答案】①④

【解析】

分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后证明△OP1P2是等边三角形,即可求解.

解:分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,
则OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,
MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2
∴∠P1OP2=2∠AOB=60°,
∴△OP1P2是等边三角形,
∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=120°
△PMN的周长=P1P2
∴P1P2=OP1=OP2=OP=8,
∴①④正确,
故答案为①④

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网