题目内容
【题目】某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A,B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果保留根号)
【答案】解:如图,过点C作CD⊥AB交AB的延长线于D点.
∵探测线与地面的夹角为30°和60°,
∴∠CAD=30°∠CBD=60°,
根据三角形的外角定理,得∠BCA=∠CBD﹣∠CAD=30°,
即∠BCA=∠CAD=30°,
∴BC=AB=3米,
在Rt△BDC中,CD=BCsin60°=3× = 米.
答:生命所在点C的深度约为 米.
【解析】过点C作CD⊥AB交AB的延长线于D点,依据题意可得到∠CAD=30°,∠CBD=60°,接下来,依据三角形的外角的性质可求得∠BCA=30°,则BC=AB=3米,最后,在Rt△BDC中利用特殊锐角三角函数值求解即可.
练习册系列答案
相关题目
【题目】为了对某市区全民阅读状况进行调查和评估,有关部门随机抽取了部分市民进行每天阅读时间情况的调查,并根据调查结果制做了如下尚不完整的频数分布表(被调查者每天的阅读时间均在0﹣120分钟之内)
阅读时间x(分钟) | 0≤x<30 | 30≤x<60 | 60≤x<90 | 90≤x≤120 |
频数 | 450 | 400 | m | 50 |
频率 | 0.45 | 0.4 | 0.1 | n |
(1)被调查的市民人数为多少,表格中,m,n为多少;
(2)补全频数分布直方图;
(3)某市区目前的常住人口约有118万人,请估计该市区每天阅读时间在60~120分钟的市民大约有多少万人?