题目内容

【题目】已知 的三边长为a,b,c,且满足方程a2x2-(c2-a2-b2)x+b2=0,则方程根的情况是( )。
A.有两相等实根
B.有两相异实根
C.无实根
D.不能确定

【答案】C
【解析】∵a,b,c为△ABC的三边长,
∴a2≠0.
∴△=(c2-a2-b22-4a2b2
=(c2-a2-b2-2ab)(c2-a2-b2+2ab),
=[c2-(a+b)2][c2-(a-b)2],
=(c-a-b)(c+a+b)(c+a-b)(c-a+b),
又∵三角形任意两边之和大于第三边,
所以△<0,则原方程没有实数根.
答案为:C.
【考点精析】掌握求根公式是解答本题的根本,需要知道根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网