题目内容
【题目】如图,在△ABC中,AB=5,AC=3,AD,AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连结DH,则线段DH的长为 .
【答案】1
【解析】解:∵AE为△ABC的角平分线,CH⊥AE,
∴△ACF是等腰三角形,
∴AF=AC,
∵AC=3,
∴AF=AC=3,HF=CH,
∵AD为△ABC的中线,
∴DH是△BCF的中位线,
∴DH= BF,
∵AB=5,
∴BF=AB﹣AF=5﹣3=2.
∴DH=1,
所以答案是:1.
【考点精析】本题主要考查了三角形中位线定理的相关知识点,需要掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半才能正确解答此题.
练习册系列答案
相关题目