题目内容
【题目】如图,在矩形ABCD中有对角线AC与BD相等,已知AB=4,BC=3,则有AB2+BC2=AC2,矩形在直线MN上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转至图②位置……依次类推,则:
(1)AC=__________.
(2)这样连续旋转2019次后,顶点B在整个旋转过程中所经过的路程之和是________.
【答案】5 3028π
【解析】
首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.
(1)∵AB2+BC2=AC2, AB=4,BC=3,
∴AC2= 42+32=25,
∴AC=5;
(2)转动一次B的路线长是:0,转动第二次的路线长是:π,转动第三次的路线长是:π,转动第四次的路线长是:=2π,以此类推,每四次循环,
2019÷4=504余3,
顶点B转动四次经过的路线长为:0+++ 2π=6π,
连续旋转2019次经过的路线长为:6π×504+0++=3028π.
故答案为:(1)5;(2)3028π.
练习册系列答案
相关题目
【题目】小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.
(1)在实验中他们共做了50次试验,试验结果如下:
朝上的点数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现的次数 | 10 | 9 | 6 | 9 | 8 | 8 |
填空:此次实验中,“1点朝上”的频率是 ;
② 小亮说:“根据试验,出现1点朝上的概率最大.”他的说法正确吗?为什么?
(2)小明也做了大量的同一试验,并统计了“1点朝上”的次数,获得的数据如下表:
试验总次数 | 100 | 200 | 500 | 1000 | 2000 | 5000 | 10000 |
1点朝上的次数 | 18 | 34 | 82 | 168 | 330 | 835 | 1660 |
1点朝上的频率 | 0.180 | 0.170 | 0.164 | 0.168 | 0.165 | 0.167 | 0.166 |
“1点朝上”的概率的估计值是 .