题目内容
【题目】如图,在正方形ABCD中,有一个小正方形EFGH,其中顶点E,F,G分别在AB,BC,FD上.
(1)求证:△EBF∽△FCD;
(2)连接DH,如果BC=12,BF=3,求tan∠HDG的值.
【答案】(1)证明见试题解析;(2).
【解析】
试题(1)由正方形的性质得到∠B=∠C=90°,∠EFG=90°,BC=CD,GH=EF=FG.由∠DFC+∠EFB=90°,∠DFC+∠FDC=90°,得到 ∠EFB =∠FDC.故△EBF∽△FCD;
(2)在Rt△CDF中,由勾股定理得到DF的长,由△EBF∽△FCD,得到 BE的长,再由勾股定理得到GH=的长,由于DG=DF-FG=,故可得到 tan∠HDG的值.
试题解析:(1)证明:∵ 正方形ABCD,正方形EFGH,∴∠B=∠C=90°,∠EFG=90°,BC=CD,GH=EF=FG.又∵ 点F在BC上,点G在FD上,∴∠DFC+∠EFB=90°,∠DFC+∠FDC=90°,∴∠EFB =∠FDC.∴△EBF∽△FCD;
(2)解:∵BF=3,BC=CD=12,∴CF=9,DF=,由(1)得,∴BE=,∴GH=FG=EF=,DG=DF-FG=,∴tan∠HDG=.
练习册系列答案
相关题目