题目内容
【题目】如图,AB是⊙O的直径,C是⊙0上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠DAC
(1)猜想直线MN与⊙O的位置关系,并说明理由;
(2)若CD=6,cos∠ACD=,求⊙O的半径.
【答案】(1)相切,理由见解析;(2)6.25
【解析】
(1)连接OC,推出AD∥OC,从而得OC⊥MN,根据切线的判定推出即可.
(2)求出AD、AB长,证△ADC∽△ACB,得出比例式,代入求出AB长即可.
解:(1)直线MN与⊙O的位置关系是相切.理由如下:
连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵∠CAB=∠DAC,
∴∠DAC=∠OCA.
∴OC∥AD.
∵AD⊥MN,
∴OC⊥MN.
∵OC为半径,
∴MN是⊙O切线.
(2)∵CD=6,,
∴AC=10.
由勾股定理得:AD=8.
∵AB是⊙O直径,AD⊥MN,
∴∠ACB=∠ADC=90°.
∵∠DAC=∠BAC,
∴△ADC∽△ACB.
∴,即.
∴AB=12.5.
∴⊙O半径是×12.5=6.25.
【题目】已知甲、乙两家公司员工日工资情况:甲公司日工资是底薪100元,每完成一件产品工资计3元;乙公司无底薪,40件以内(含40件)产品的部分每件产品工资计8元,超出40件的部分每件产品工资计10元,为此,在这两家公司各随机调查了100名工人日完成产品数,并整理得到如下频数分布表:
日完成产品数 | 38 | 39 | 40 | 41 | 42 |
甲公司工人数 | 20 | 40 | 20 | 10 | 10 |
乙公司工人数 | 10 | 20 | 20 | 40 | 10 |
(1)若甲、乙公司日工资加上其他福利,总的待遇相同,A、B两人分别到甲、乙公司应聘,都选中甲公司的概率是多少?
(2)试以这两家公司各100名工人日工资的平均数作为决策依据,若某人要去这两家公司应聘,为他做出选择,去哪一家公司的经济收入可能会多一些?