题目内容
【题目】如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC延长线于G.求证:BF=CG.
【答案】解:如图,连接BE、EC,
∵ED⊥BC,
D为BC中点,
∴BE=EC,
∵EF⊥AB EG⊥AG,
且AE平分∠FAG,
∴FE=EG,
在Rt△BFE和Rt△CGE中,
,
∴Rt△BFE≌Rt△CGE(HL),
∴BF=CG.
【解析】连接EB、EC,利用已知条件证明Rt△BEF≌Rt△CEG,即可得到BF=CG.
【考点精析】根据题目的已知条件,利用角平分线的性质定理和线段垂直平分线的性质的相关知识可以得到问题的答案,需要掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等.
练习册系列答案
相关题目