题目内容
【题目】如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.
(1)当A、B、C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中△BCE绕点B旋转,当A、B、E三点在同一直线上(如图2),求证:△CAN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.
【答案】
(1)解:证明:如图1,∵EN∥AD,
∴∠MAD=∠MNE,∠ADM=∠NEM,
∵点M为DE的中点,
∴DM=EM,
在△ADM和△NEM中,
,
∴△ADM≌△NEM(AAS),
∴AM=MN,
∴M为AN的中点
(2)解:证明:如图2,∵△BAD和△BCE均为等腰直角三角形,
∴AB=AD,CB=CE,∠CBE=∠CEB=45°,
∵AD∥NE,
∴∠DAE+∠NEA=180°,
∵∠DAE=90°,
∴∠NEA=90°,
∴∠NEC=135°,
∵A,B,E三点在同一直线上,
∴∠ABC=180°﹣∠CBE=135°,
∴∠ABC=∠NEC,
∵△ADM≌△NEM(已证),
∴AD=NE,
∵AD=AB,
∴AB=NE,
在△ABC和△NEC中,
,
∴△ABC≌△NEC(SAS),
∴AC=NC,∠ACB=∠NCE,
∵∠BCE=90°,
∴∠ACN=∠BCE=90°,
∴△ACN为等腰直角三角形.
(3)解:△ACN仍为等腰直角三角形.
证明:如图3,A、B、N三点在同一条直线上,
∵AD∥EN,∠DAB=90°,
∴∠ENA=∠DAN=90°,
∵∠BCE=90°,
∴∠CBN+∠CEN=360°﹣90°﹣90°=180°,
∵A、B、N三点在同一条直线上,
∴∠ABC+∠CBN=180°,
∴∠ABC=∠NEC,
∵△ADM≌△NEM(已证),
∴AD=NE,
∵AD=AB,
∴AB=NE,
在△ABC和△NEC中,
,
∴△ABC≌△NEC(SAS),
∴AC=NC,∠ACB=∠NCE,
∴∠ACN=∠BCE=90°,
∴△ACN为等腰直角三角形.
【解析】(1)由EN∥AD和点M为DE的中点,可以证得△ADM≌△NEM,从而证得M为AN的中点;(2)根据已知条件,易证AB=DA=NE,∠ABC=∠NEC=135°,从而可得△ABC≌△NEC,进而可以证得AC=NC,∠ACN=∠BCE=90°,可得△ACN为等腰直角三角形;(3)根据已知条件,易得△ADM≌△NEM,根据四边形BCEF内角和为360°,可得∠ABC=∠FEC,从而可以证得△ABC≌△NEC,进而可以证得AC=NC,∠ACN=∠BCE=90°,即可得出△ACN为等腰直角三角形.
【考点精析】认真审题,首先需要了解等腰直角三角形(等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°).