题目内容
【题目】某学生会倡导的“爱心捐款”活动结束后,学生会干部对捐款情况作了抽样调查,并绘制了统计图,图中从左到右各长方形高度之比为3:4:5:8:2,又知此次调查中捐15元和20元的人数共39人.
(1)他们一共抽查了多少人?
(2)这组数据的众数、中位数分别是多少?
(3)若该校共有2310名学生,请估算有多少人捐款数不少于20元?
【答案】(1)他们一共抽查了66人;(2)这组数据的众数是20,中位数是15;(3)有1050捐款数不少于20元.
【解析】
(1),根据捐15元和20元的总人数及其比例,可列一元一次方程,进而可求出调查的总人数;对于(2),根据这组数据可直接算出众数和中位数;对于(3),需先计算出调查的人中捐款不少于20元的人数所占的比例,进而可估算出全校捐款不少于20元的人数
(1)39÷ =66(人),
即他们一共抽查了66人;
(2)由直方图可知,
这组数据的众数是20,中位数是15;
(3)2310×=1050(人),
答:有1050捐款数不少于20元.
练习册系列答案
相关题目
【题目】随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.玩游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调査,得到如图表(部分信息未给出):
选项 | 频数 | 百分比 |
A | 10 | m |
B | n | 0.2 |
C | 5 | 0.1 |
D | p | 0.4 |
E | 5 | 0.1 |
根据以上信息解答下列问题:
(1)这次被调查的学生有多少人?
(2)求表中m,n,p的值,并补全条形统计图;
(3)若该中学约有2400名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调査结果,就中学生如何合理使用手机给出你的一条建议.