题目内容
【题目】四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,若AF=4,AB=7.
(1)求DE的长度;
(2)试猜想:直线BE与DF有何位置关系?并说明理由.
【答案】(1)3;(2)BE⊥DF,见解析.
【解析】
(1)根据旋转的性质可得AE=AF,AD=AB,然后根据DE=AD-AE计算即可得解;
(2)延长BE交DF于点G,根据旋转可得由旋转的性质得,∠ADF=∠ABE,∠FAD=∠EAB=90°,然后求出∠ABE+∠F=90°,判断出BE⊥DF.
解:(1)由旋转的性质得,AE=AF=4,AD=AB=7,
∴DE=AD﹣AE=7﹣4=3;
(2)BE⊥DF.理由如下:
延长BE交DF于点G,
由旋转的性质得,∠ADF=∠ABE,∠FAD=∠EAB=90°,
∴∠F+∠ADF=90°,
∴∠ABE+∠F=90°,
∴∠BGF=90°.即BE⊥DF.
【题目】已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | … | ||
y | … | ﹣ | ﹣ | ﹣ | m | … |
小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:
(1)从表格中读出,当自变量是﹣2时,函数值是 ;
(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(3)在画出的函数图象上标出x=2时所对应的点,并写出m= .
(4)结合函数的图象,写出该函数的一条性质: .
【题目】今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.
对雾霾了解程度的统计表:
对雾霾的了解程度 | 百分比 |
A.非常了解 | 5% |
B.比较了解 | m |
C.基本了解 | 45% |
D.不了解 | n |
请结合统计图表,回答下列问题.
(1)本次参与调查的学生共有 人,m= ,n= ;
(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是 度;
(3)请补全条形统计图;
(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.