题目内容
【题目】如图,平面直角坐标系中,矩形ABOC的边BO,CO分别在x轴,y轴上,A点的坐标为(﹣8,6),点P在矩形ABOC的内部,点E在BO边上,满足△PBE∽△CBO,当△APC是等腰三角形时,P点坐标为_____.
【答案】或.
【解析】
由题意得出P点在AC的垂直平分线上或在以点C为圆心AC为半径的圆弧上;
①当P点在AC的垂直平分线上时,点P同时在BC上,AC的垂直平分线与BO的交点即是E,证出PE∥CO,则△PBE∽△CBO,由已知得出点P横坐标为﹣4,OC=6,BO=8,BE=4,由相似对应边成比例得出PE=3即可得出结果;
②P点在以点C为圆心AC为半径的圆弧上,圆弧与BC的交点为P,过点P作PE⊥BO于E,证出PE∥CO,则△PBE∽△CBO,由已知得出AC=BO=8,CP=8,AB=OC=6,由勾股定理得出BC==10,则BP=2,由相似对应边成比例得出PE=,BE=,则OE=即可得出结果.
解:∵点P在矩形ABOC的内部,且△APC是等腰三角形,
∴P点在AC的垂直平分线上或在以点C为圆心AC为半径的圆弧上;
①当P点在AC的垂直平分线上时,点P同时在BC上,AC的垂直平分线与BO的交点即是E,如图1所示:
∵PE⊥BO,CO⊥BO,
∴PE∥CO,
∴△PBE∽△CBO,
∵四边形ABOC是矩形,A点的坐标为(﹣8,6),
∴点P横坐标为﹣4,OC=6,BO=8,BE=4,
∵△PBE∽△CBO,
∴=,即=,
解得:PE=3,
∴点P(﹣4,3);
②P点在以点C为圆心AC为半径的圆弧上,圆弧与BC的交点为P,
过点P作PE⊥BO于E,如图2所示:
∵CO⊥BO,
∴PE∥CO,
∴△PBE∽△CBO,
∵四边形ABOC是矩形,A点的坐标为(﹣8,6),
∴AC=BO=8,CP=8,AB=OC=6,
∴BC===10,
∴BP=2,
∵△PBE∽△CBO,
∴==,即:==,
解得:PE=,BE=,
∴OE=8﹣=,
∴点P(﹣,);
综上所述:点P的坐标为:(﹣,)或(﹣4,3);
故答案为(﹣,)或(﹣4,3).