题目内容
【题目】如图,AB=AC=8,∠BAC=90,直线l与以AB为直径的⊙O相切于点B,点D是直线l上任意一动点,连结DA交⊙O点E.
(1)当点D在AB上方且BD=6时,求AE的长;
(2)当CE恰好与⊙O相切时,求BD的长为多少?
【答案】(1)AE=;(2)BD= 4.
【解析】
(1)连接BE,在Rt△ABD中,利用勾股定理求出AD的长,进而利用直角三角形等面积求出BE的长,在Rt△ABE中,利用勾股定理即可求出AE的长。
(2)连接OC,证明△ABD≌△CAO,根据全等三角形的性质即可求出BD的长.
解:(1)∵AB为直径,
∴∠AEB=90°,
∵BD为切线,
∴AB⊥BD,
∴∠ABD=90°,
在Rt△ABD中,
∵
∴
在Rt△ABE中,
(2)连接OC,如图,
∵∠BAC=90°,
∴CA为⊙O的切线,
∵CE为⊙O的切线,
∴CA=CE,
而OA=OE,
∴OC垂直平分AE,
∴∠1+∠3=90°,
而∠1+∠2=90°,
∴∠2=∠3,
而AB=CA,∠CAO=∠ABD,
∴△ABD≌△CAO,
∴BD=AO=4.
练习册系列答案
相关题目