题目内容
【题目】在平面直角坐标系中,已知、,B为y轴上的动点,以AB为边构造,使点C在x轴上,为BC的中点,则PM的最小值为______.
【答案】
【解析】
如图,作AH⊥y轴于H,CE⊥AH于E.则四边形CEHO是矩形,OH=CE=4,由△AHB∽△CEA,得,推出,推出AE=2BH,设BH=x则AE=2x,推出B(0,4﹣x),C(2+2x,0),由BM=CM,推出M(1+x,),可得PM,由此即可解决问题.
如图,作AH⊥y轴于H,CE⊥AH于E.则四边形CEHO是矩形,OH=CE=4.
∵∠BAC=∠AHB=∠AEC=90°,∴∠ABH+∠HAB=90°,∠HAB+∠EAC=90°,∴∠ABH=∠EAC,∴△AHB∽△CEA,∴,∴,∴AE=2BH,设BH=x则AE=2x,∴OC=HE=2+2x,OB=4﹣x,∴B(0,4﹣x),C(2+2x,0).
∵BM=CM,∴M(1+x,).
∵P(1,0),∴PM,∴x时,PM有最小值,最小值为.
故答案为:.
练习册系列答案
相关题目