搜索
题目内容
已知一个一次函数
经过
,
两点,求此一次函数的解析式;
试题答案
相关练习册答案
试题分析:根据图象经过
,
两点即可根据待定系数法求得函数关系式.
∵一次函数
经过
,
两点
∴
,解得
∴此一次函数的解析式为
.
点评:本题属于基础应用题,只需学生熟练掌握待定系数法求函数关系式,即可完成.
练习册系列答案
全优考典单元检测卷及归类总复习系列答案
黄冈经典教程系列丛书新思维系列答案
三维设计系列答案
课堂新坐标高中同步导学案系列答案
单元测试得满分朝阳试卷系列答案
品学双优卷系列答案
期末闯关全程特训卷系列答案
小学期末冲刺100分系列答案
新编单元测试AB卷系列答案
期末夺冠满分测评卷系列答案
相关题目
一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系;
(1)根据图中信息,说明图中点(2,0)的实际意义;
(2)求图中线段AB所在直线的函数解析式和甲乙两地之间的距离;
(3)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;
如图,在等腰三角形ABC中,AB=AC=10cm,∠ABC=30
0
,以BC所在直线为x轴,以BC边上的高所在的直线为y轴建立平面直角三角形系。
(1)求直线AC的解析式;
(2)有一动点P以1cm/s的速度从点B开始沿x轴向其正方向运动,设点P的运动为t秒(单位:s)。
①当t为何值时,ΔABP是直角三角形;
②现有另一点Q与点P同时从点B开始,以1cm/s的速度从点B开始沿折线BAC运动,当点Q到达点C时,P、Q两点同时停止运动。试写出ΔBPQ的面积S关于t的函数解析式,并写出自变量的取值范围。
湖州市八里店镇戴山村生产一种绿色蔬菜,直接销售每吨利润可达2000元;若经粗加工后再销售,每吨利润可达4500元;若经精加工后销售,每吨利润涨到7500元。
当地一家公司收获这种蔬菜140吨,该公司的生产能力是:如果蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但这两种加工方式不能同时进行,受季节条件限制公司必须用15天时间将这批蔬菜全部销售或加工完毕,该公司现有如下两种方案:
方案1:将蔬菜进行精加工,剩下的可直接销售;
方案2:将一部分蔬菜进行精加工,其余进行粗加工,并恰好用15天完成;
试通过分析运算,你认为选择哪种方案获利较多?
若点
.与
在一次函数y=-2x+b的图象上,则
(填>、<或=).
已知A、B两地的路程为240
.某经销商每天都要用汽车或火车将
保鲜品一次性由A地运往B地.受各种因素限制,下周只能采取用汽车和火车中的一种进行运输且需提前预定.现有货运收费项目及收费标准表、行驶路
/
与行驶时间
/s的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:
运输工具
运输费单价元/(
·
)
冷藏费单价元/(
·h)
固定费用元/次
汽车
2
5
200
火车
1.6
5
2280
(1)汽车的速度为
/h,火车的速度为
/h;
(2)设每天用汽车和火车运输的总费用分别为
/元和
/元,分别求
、
与
的函数关系式(不必写出
的取值范围),及
为何值时
>
;
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输费用较省?
已知y与x成正比例,且当x=1时,y=3,则y与x的函数关系式是
.
若自变量x和函数y满足方程2x+3y=1,则函数解析式为___________.
如图,一次函数y=ax+b与x轴,y轴交于A,B两点,与反比例函数y=
相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE,EF.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.其中正确的结论个数是( )
A.1 B.2 C.3 D.4
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总