题目内容
【题目】如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.
(1)求证:四边形ADCF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.
【答案】(1)证明见解析;(2)等腰直角三角形.
【解析】试题分析:
(1)先证四边形ABDF是平行四边形,再证结论;
(2)由四边形ADCF是正方形来证明△ABC是等腰直角三角形.
试题解析:
(1)证明:∵点D、E分别是边BC、AC的中点,∴DE∥AB,
∵AF∥BC,∴四边形ABDF是平行四边形,∴AF=BD,则AF=DC=AD,
∵AF∥BC,∴四边形ADCF是平行四边形;
(2)当△ABC是等腰直角三角形时,四边形ADCF是正方形,
理由:∵四边形ADCF是正方形,∴∠ADC=90°,AC=DF,AF=DC.
∵点D,E分别是边BC,AC的中点,AB=2DE,∴AB=DF,所以AB=AC.
∴四边形ABDF是平行四边形,∴AF=BD,∴BD=CD=AD,
∴∠BAC=90°,
∴△ABC是等腰直角三角形.
练习册系列答案
相关题目