题目内容

【题目】为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.

满意度

人数

所占百分比

非常满意

12

10%

满意

54

m

比较满意

n

40%

不满意

6

5%

根据图表信息,解答下列问题:

(1)本次调查的总人数为______,表中m的值为_______

(2)请补全条形统计图;

(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.

【答案】(1)12045%(2)补图见解析;(3)平均每天得到约1980人的肯定.

【解析】

(1)非常满意的人数÷所占百分比计算即可得;用满意的人数÷总人数即可得m

(2)计算出比较满意的n的值,然后补全条形图即可

(3)每天接待的游客×(非常满意+满意)的百分比即可

(1)12÷10%=120;54÷120×100%=45%

(2)比较满意:120×40%=48(人);补全条形统计图如图.

(3)3600×(45%+10%)=1980(人).

答:该景区服务工作平均每天得到约1980人的肯定.

练习册系列答案
相关题目

【题目】问题再现:

数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义推证完全平方公式.将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1,这个图形的面积可以表示成:(a+b2a2+2ab+b2∴(a+b2a2+2ab+b2

这就验证了两数和的完全平方公式.

问题提出:

如何利用图形几何意义的方法推证:13+2332 如图2A表示11×1的正方形,即:1×1×113B表示12×2的正方形,CD恰好可以拼成12×2的正方形,因此:BCD就可以表示22×2的正方形,即:2×2×223,而ABCD恰好可以拼成一个(1+2×1+2)的大正方形,由此可得:13+23=(1+2232

尝试解决:

请你类比上述推导过程,利用图形几何意义方法推证:13+23+33   (要求自己构造图形并写出推证过程)

类比归纳:

请用上面的表示几何图形面积的方法探究:13+23+33+…+n3   (要求直接写出结论,不必写出解题过程)

实际应用:

3是由棱长为1的小正方体搭成的大正方体,图中大小正方体一共有多少个?为了正确数出大小正方体的总个数,我们可以分类统计,即分别数出棱长是1234的正方体的个数,再求总和.

例如:棱长是1的正方体有:4×4×443个,棱长是2的正方体有:3×3×333个,棱长是3的正方体有:2×2×223个,棱长是4的正方体有:1×1×l13个,然后利用(3)类比归纳的结论,可得:     4是由棱长为1的小正方体成的大正方体,图中大小正方体一共有   个.

逆向应用:

如果由棱长为1的小正方体搭成的大正方体中,通过上面的方式数出的大小正方体一共有44100个,那么棱长为1的小正方体一共有   个.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网