题目内容
如图,⊙O1和⊙O2内切,它们的半径分别为3和1,过O1作⊙O2的切线,切点为A,则O1A的长为______________.
.
试题分析:连接过切点的半径,构造直角三角形,根据两圆内切,得到两圆的圆心距,再根据勾股定理进行计算.
试题解析:连接O2A,
根据切线的性质,得∠O2AO1=90°,
根据两圆内切,得O1O2=3-1=2,
根据勾股定理,得O1A=.
考点: 1.相切两圆的性质;2.切线的性质.
练习册系列答案
相关题目
题目内容