题目内容
如图,△ACD和△AEB都是等腰直角三角形,∠EAB=∠CAD=90°,下列五个结论:①EC=BD;②EC⊥BD;③S四边形EBCD=1 | 2 |
分析:证明△ABD≌△AEC,可得到EC=BD,∠AEC=∠ABD,从而可证明EC⊥BD,从而可知道四边形EBCD的面积,根据两个角对应相等的两个三角形互为相似三角形可证明△ADE和△ABC是否相似.
解答:解:∵△ACD和△AEB都是等腰直角三角形,
∴AE=AB,AD=AC,∠EAC=∠BAD,
∴△AEC≌△ABD,
∴EC=BD,∠AEC=∠ABD,
∵∠AEB+∠ABE=90°,
∴∠FEB+∠EBF=90°,
∴EC⊥BD,
∴SEBCD=
EC•BD.
所以①②③正确.
④错误.
∵∠EBF=45°+∠ABF,∠FCD=45°+∠ACF,∠ABF≠∠ACF,
∴∠EBF≠∠FCD,
同理:∠BEF≠∠CDF.
∴△EBF和△CDF不相似.
故⑤不正确.
故答案为:①②③
∴AE=AB,AD=AC,∠EAC=∠BAD,
∴△AEC≌△ABD,
∴EC=BD,∠AEC=∠ABD,
∵∠AEB+∠ABE=90°,
∴∠FEB+∠EBF=90°,
∴EC⊥BD,
∴SEBCD=
1 |
2 |
所以①②③正确.
④错误.
∵∠EBF=45°+∠ABF,∠FCD=45°+∠ACF,∠ABF≠∠ACF,
∴∠EBF≠∠FCD,
同理:∠BEF≠∠CDF.
∴△EBF和△CDF不相似.
故⑤不正确.
故答案为:①②③
点评:本题考查了全等三角形的判定和性质,等腰直角三角形的性质,相似三角形的判定.
练习册系列答案
相关题目