题目内容

【题目】如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.

(1)求∠CDE的度数;
(2)求证:DF是⊙O的切线;
(3)若AC=2 DE,求tan∠ABD的值.

【答案】
(1)

解:∵对角线AC为⊙O的直径,

∴∠ADC=90°,

∴∠EDC=90°


(2)

证明:连接DO,

∵∠EDC=90°,F是EC的中点,

∴DF=FC,

∴∠FDC=∠FCD,

∵OD=OC,

∴∠OCD=∠ODC,

∵∠OCF=90°,

∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,

∴DF是⊙O的切线;


(3)

解:如图所示:

可得∠ABD=∠ACD,

∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,

∴∠DCA=∠E,

又∵∠ADC=∠CDE=90°,

∴△CDE∽△ADC,

∴DC2=ADDE

∵AC=2 DE,

∴设DE=x,则AC=2 x,

则AC2﹣AD2=ADDE,

期(2 x)2﹣AD2=ADx,

整理得:AD2+ADx﹣20x2=0,

解得:AD=4x或﹣4.5x(负数舍去),

则DC= =2x,

故tan∠ABD=tan∠ACD= =2.


【解析】(1)直接利用圆周角定理得出∠CDE的度数;(2)直接利用直角三角形的性质结合等腰三角形的性质得出∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,进而得出答案;(3)利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值.此题主要考查了圆的综合以及切线的判定、相似三角形的判定与性质、勾股定理等知识,根据题意表示出AD,DC的长是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网