题目内容

如图,已知抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,点P是x轴上的动点.
(1)求抛物线的解析式;
(2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由;
(3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.
精英家教网
分析:(1)利用待定系数法,将点A,B,C的坐标代入解析式即可求得;
(2)根据等腰梯形的判定方法分别从PC∥AB与BP∥AC去分析,注意不要漏解;
(3)首先确定点P与点H的位置,再求解各线段的长即可.
解答:解:∵抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,
9a+3b+c=3.5
16a+4b+c=2
c=2

解得:
a=-
1
2
b=2
c=2

∴此抛物线的解析式为:y=-
1
2
x2+2x+2;

(2)∵A(3,3.5)、B(4,2)、C(0,2),
∴AC=
3
5
2
,AB=
13
2
精英家教网
①若PC∥AB,则过点B作BE∥x轴,过点A作AE∥y轴,交点为E,
∴AE=1.5,BE=1,
OC
AE
=
OP
BE
时,AB∥PC,
2
1.5
=
OP
1

∴OP=
4
3

∴点P的坐标为:(
4
3
,0),
∴BP=
10
3

∴AP≠BC,
∴此点不符合要求,舍去;
②若BP∥AC,则过点A作AE∥y轴,过点C作CE∥x轴,相交于点E,过点B作BF∥y精英家教网轴,
AE
BF
=
CE
PF
时,BP∥AC,
1.5
3
=
2
PF

解得:PF=4,
∴点P与点O重合,
∴PC=2≠AB.
∴此点不符合要求,舍去;

(3)过A作对称轴的对称点A′,过B作x轴对称点B′,连接A′B′,分别交对称轴与x轴于H点、P点,则这两点即为所求.精英家教网
∴AH=A′H,PB=PB′,
∴AB+AH+PH+PB=AB+A′H+HP+PB′=AB+A′B′,
∵抛物线的y=-
1
2
x2+2x+2的对称轴为:x=2,
∵A(3,3.5),B(4,2),
∴A′(1,3.5),B′(4,-2),
∴AB=
13
2
,A′B′=
157
2

∴四边形AHPB周长的最小值为:
13
2
+
157
2
点评:此题考查了待定系数法求二次函数的解析式,等腰梯形的判定与性质以及周长和最小问题.此题比较复杂,注意数形结合思想与分类讨论思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网