题目内容

正方形ABCD和正方形DEFG如图①放置,保持正方形ABCD不动,将正方形DEFG绕点D顺时针旋转,旋转角为α(0°<α<180°)

(1)当0°<α<90°时,如图②,连结AE、CG,则AE:CG=   
(2)当90°<α<180°时,如图③,连结AE、CG,(1)中的结论还成立吗?请说明理由;
(3)将图③中的正方形ABCD和正方形DEFG分别改为矩形ABCD和矩形DEFG,且使AD=4,CD=6,ED=2,GD=3,如图④,求AE:CG的值.
(1)1;(2)成立,理由见试题解析;(3)2:3.

试题分析:(1)易证△ADE≌△CDG,即可得出AE:CG=1;
(2)与(1)类似,证明△ADE≌△CDG,即可得出AE:CG=1;
(3)证明△ADE∽△CDG即可.
试题解析:(1)∵正方形ABCD和正方形DEFG,∴AD=CD,DE=DG,∠ADC=∠EDG=90°,∴∠ADE=∠CDG,在△AED和△CGD中,∵AD=CD,∠ADE=∠CDG ,DE=DG,∴△ADE≌△CDG,∴AE=CG,∴AE:CG=1;
(2)成立,理由如下:
∵正方形ABCD和正方形DEFG,∴AD=CD,DE=DG,∠ADC=∠EDG=90°,∴∠ADE=∠CDG,在△AED和△CGD中,∵AD=CD,∠ADE=∠CDG ,DE=DG,∴△ADE≌△CDG,∴AE=CG,∴AE:CG=1;
(3)∵矩形ABCD和矩形DEFG,∴∠ADC=∠EDG=90°,∴∠ADE=∠CDG,∵,∴,∴△ADE∽△CDG,∴AE:CG=AD:DC=4:6=2:3.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网