题目内容

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是(

A.4个
B.3个
C.2个
D.1个

【答案】B
【解析】解:∵抛物线开口向下,
∴a<0,
∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,
∴b>0,c>0,故①错误;
由图象知,当x=1时,y<0,即a+b+c<0,故②正确,
令方程ax2+bx+c=0的两根为x1、x2
由对称轴x>0,可知 >0,即x1+x2>0,故③正确;
由可知抛物线与x轴的左侧交点的横坐标的取值范围为:﹣1<x<0,
∴当x=﹣1时,y=a﹣b+c<0,故④正确.
故选:B.
【考点精析】本题主要考查了二次函数图象以及系数a、b、c的关系的相关知识点,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网