题目内容
【题目】如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.
(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的长.
【答案】(1)、证明过程见解析;(2)、
【解析】
试题分析:(1)、利用已知条件易证AB∥DE,进而证明△DCE∽△BCA;(2)、首先证明AE=DE,设DE=x,所以CE=AC﹣AE=AC﹣DE=4﹣x,利用(1)中相似三角形的对应边成比例即可求出x的值,即DE的长.
试题解析:(1)、∵AD平分∠BAC, ∴∠BAD=∠DA, ∵∠EAD=∠ADE, ∴∠BAD=∠ADE,
∴AB∥DE, ∴△DCE∽△BCA;
(2)、∵∠EAD=∠ADE, ∴AE=DE, 设DE=x, ∴CE=AC﹣AE=AC﹣DE=4﹣x,
∵△DCE∽△BCA, ∴DE:AB=CE:AC, 即x:3=(4﹣x):4, 解得:x=,
∴DE的长是.
练习册系列答案
相关题目