题目内容
【题目】如图,△OAP是等腰直角三角形,∠OAP=90°,点A在第四象限,点P坐标为(8,0),抛物线y=ax2+bx+c经过原点O和A、P两点.
(1)求抛物线的函数关系式.
(2)点B是y轴正半轴上一点,连接AB,过点B作AB的垂线交抛物线于C、D两点,且BC=AB,求点B坐标;
(3)在(2)的条件下,点M是线段BC上一点,过点M作x轴的垂线交抛物线于点N,求△CBN面积的最大值.
【答案】(1);(2);(3).
【解析】
(1)先根据是等腰直角三角形,和点P的坐标求出点A的坐标,再利用待定系数法即可求得;
(2)设点,如图(见解析),过点C作CH垂直y轴于点H,过点A作AQ垂直y轴于点Q,易证明,可得,则点C坐标为,将其代入题(1)中的抛物线函数关系式即可得;
(3)如图,延长NM交CH于点E,则,先通过点B、C求出直线BC的函数关系式,因点N在抛物线上,则设,则可得点M的坐标,再根据三角形的面积公式列出等式,利用二次函数的性质求最值即可.
(1)是等腰直角三角形,,点P坐标为
则点A的坐标为
将点O、A、B三点坐标代入抛物线的函数关系式得:
,解得:
故抛物线的函数关系式为:;
(2)设点,过点C作CH垂直y轴于点H,过点A作AQ垂直y轴于点Q,
又
故点C的坐标为
将点C的坐标代入题(1)的抛物线函数关系式得:
,解得:
故点B的坐标为;
(3)如图,延长NM交CH于点E,则
设直线BC的解析式为:,将点,点代入得:
解得:
则直线BC的解析式为:
因点N在抛物线上,设,则点M的坐标为
的面积
即
整理得:
又因点M是线段BC上一点,则
由二次函数的性质得:当时,y随x的增大而增大;当时,y随x的增大而减小
故当时,取得最大值.
练习册系列答案
相关题目