题目内容
【题目】如图已知△CAB和△CDE中,CA=CB,CD=CE,∠BCA=∠DCE=.连BE,BD.
(1)如图1,若∠BCA=60,BD与AE交于点F,求∠AFB的度数;
(2)如图2,请探究∠EBD,∠AEB与之间的关系;
(3)如图3,直接写出∠EBD,∠AEB与之间的关系.
【答案】(1)60;(2)∠EBD-∠AEB=;(3)∠EBD+∠AEB+=360.
【解析】
(1)∠ACE=∠ACB+∠BCE=∠DCE+∠BCE=∠BCD,再由AC=BC和CE=CD可证明△ACE≌BCD,则∠CAE=∠CBD,由图可知∠CAE+∠ACB=∠CBD+∠BFA,则∠AFB=∠ACB=60°;
(2)由AC=BC,EC=DC且∠ACE=∠α-∠ECB=∠BCD,易证△ACE≌BCD,则∠AEC=∠BDC,再由∠EBD=∠CEB+∠CDB+∠ECD可得
∠EBD=∠AEB+∠ECD=∠AEB+,则∠EBD-∠AEB=;
(3)同上易证△ACE≌BCD,从而∠CAE=∠CBD,由四边形ECDB的内角和定理可得∠CEB+∠CBD+∠ECD+∠BDC=360°,则∠EBD+∠AEB+=360.
(1)∵∠ACE=∠ACB+∠BCE,∠BCD=∠DCE+∠BCE,
∴∠ACE=∠BCD,
又∵AC=BC,CE=CD,
∴△ACE≌BCD,
∴∠CAE=∠CBD,
∵∠CAE+∠ACB=∠CBD+∠BFA,
∴∠AFB=∠ACB=60°.
(2)∠EBD-∠AEB=.
证明:
∵∠ACE=∠ACB-∠BCE,∠BCD=∠DCE-∠BCE,
∴∠ACE=∠BCD,
又∵AC=BC,CE=CD,
∴△ACE≌BCD,
∴∠AEC=∠BDC,
∵∠EBD=∠CEB+∠CDB+∠ECD,
∴∠EBD=∠AEB+∠ECD=∠AEB+,
即∠EBD-∠AEB=.
(3)∠EBD+∠AEB+=360.
∵∠ACE=∠ACB-∠BCE,∠BCD=∠DCE-∠BCE,
∴∠ACE=∠BCD,
又∵AC=BC,CE=CD,
∴△ACE≌BCD,
∴∠CAE=∠CBD,
在四边形ECDB中,
∵∠CEB+∠CBD+∠ECD+∠BDC=360°,
∴∠EBD+∠AEB+=360.