题目内容
【题目】定义运算:ab=a(1﹣b).若a,b是方程x2﹣x+ m=0(m<0)的两根,则bb﹣aa的值为( )
A.0
B.1
C.2
D.与m有关
【答案】A
【解析】解:(方法一)∵a,b是方程x2﹣x+ m=0(m<0)的两根, ∴a+b=1,
∴bb﹣aa=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.
(方法二)∵a,b是方程x2﹣x+ m=0(m<0)的两根,
∴a+b=1.
∵bb﹣aa=b(1﹣b)﹣a(1﹣a)=b﹣b2﹣a+a2=(a2﹣b2)+(b﹣a)=(a+b)(a﹣b)﹣(a﹣b)=(a﹣b)(a+b﹣1),a+b=1,
∴bb﹣aa=(a﹣b)(a+b﹣1)=0.
(方法三)∵a,b是方程x2﹣x+ m=0(m<0)的两根,
∴a2﹣a=﹣ m,b2﹣b=﹣ m,
∴bb﹣aa=b(1﹣b)﹣a(1﹣a)=﹣(b2﹣b)+(a2﹣a)= m﹣ m=0.
故选A.
(方法一)由根与系数的关系可找出a+b=1,根据新运算找出bb﹣aa=b(1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.
(方法二)由根与系数的关系可找出a+b=1,根据新运算找出bb﹣aa=(a﹣b)(a+b﹣1),代入a+b=1即可得出结论.
(方法三)由一元二次方程的解可得出a2﹣a=﹣ m、b2﹣b=﹣ m,根据新运算找出bb﹣aa=﹣(b2﹣b)+(a2﹣a),代入后即可得出结论.