题目内容
【题目】如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).
(1)∠PBD的度数为 , 点D的坐标为(用t表示);
(2)当t为何值时,△PBE为等腰三角形?
(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.
【答案】
(1)解:45°;(t,t)
(2)解:①若PB=PE,
由△PAB≌△DQP得PB=PD,
显然PB≠PE,
∴这种情况应舍去.
②若EB=EP,
则∠PBE=∠BPE=45°.
∴∠BEP=90°.
∴∠PEO=90°﹣∠BEC=∠EBC.
在△POE和△ECB中,
∴△POE≌△ECB(AAS).
∴OE=CB=OC.
∴点E与点C重合(EC=0).
∴点P与点O重合(PO=0).
∵点B(﹣4,4),
∴AO=CO=4.
此时t=AP=AO=4.
③若BP=BE,
在Rt△BAP和Rt△BCE中,
∴Rt△BAP≌Rt△BCE(HL).
∴AP=CE.
∵AP=t,
∴CE=t.
∴PO=EO=4﹣t.
∵∠POE=90°,
∴PE=
= (4﹣t).
延长OA到点F,使得AF=CE,连接BF,如图2所示.
在△FAB和△ECB中,
∴△FAB≌△ECB.
∴FB=EB,∠FBA=∠EBC.
∵∠EBP=45°,∠ABC=90°,
∴∠ABP+∠EBC=45°.
∴∠FBP=∠FBA+∠ABP
=∠EBC+∠ABP=45°.
∴∠FBP=∠EBP.
在△FBP和△EBP中,
∴△FBP≌△EBP(SAS).
∴FP=EP.
∴EP=FP=FA+AP
=CE+AP.
∴EP=t+t=2t.
∴ (4﹣t)=2t.
解得:t=4 ﹣4
∴当t为4秒或(4 ﹣4)秒时,△PBE为等腰三角形
(3)解:∵EP=CE+AP,
∴OP+PE+OE=OP+AP+CE+OE
=AO+CO
=4+4
=8.
∴△POE周长是定值,该定值为8
【解析】解:(1)如图1,
由题可得:AP=OQ=1×t=t(秒)
∴AO=PQ.
∵四边形OABC是正方形,
∴AO=AB=BC=OC,
∠BAO=∠AOC=∠OCB=∠ABC=90°.
∵DP⊥BP,
∴∠BPD=90°.
∴∠BPA=90°﹣∠DPQ=∠PDQ.
∵AO=PQ,AO=AB,
∴AB=PQ.
在△BAP和△PQD中,
∴△BAP≌△PQD(AAS).
∴AP=QD,BP=PD.
∵∠BPD=90°,BP=PD,
∴∠PBD=∠PDB=45°.
∵AP=t,
∴DQ=t.
∴点D坐标为(t,t).
故答案为:45°,(t,t).
(1)易证△BAP≌△PQD,从而得到DQ=AP=t,从而可以求出∠PBD的度数和点D的坐标.(2)由于∠EBP=45°,故图1是以正方形为背景的一个基本图形,容易得到EP=AP+CE.由于△PBE底边不定,故分三种情况讨论,借助于三角形全等及勾股定理进行求解,然后结合条件进行取舍,最终确定符合要求的t值.(3)由(2)已证的结论EP=AP+CE很容易得到△POE周长等于AO+CO=8,从而解决问题.