题目内容
【题目】阅读下面的材料:
如图①,若线段AB在数轴上,A,B点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a
请用上面材料中的知识解答下面的问题:
如图②,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm
(1)请你在数轴上表示出A,B,C三点的位置,并直接写出线段AC的长度;
(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?
(3)若将点A向右移动xcm,请用代数式表示移动后的点表示的数?
(4)若点B以每秒2cm的速度向左移动至点P1,同时点A,点C分别以每秒1cm和4cm的速度向右移动至点P2,点P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t的变化而变化?请说明理由.
【答案】(1)数轴见解析;AC=5cm;(2)﹣5或3;(3)﹣1+x;(4)P3P2﹣P1P2的值不会随着t的变化而变化.
【解析】
(1)根据题意易画出图形,再由C点所表示的数减去A点所表示的数即可;
(2)设D表示的数为a,由绝对值的意义可求解;
(3)向右移动xcm,即A点所表示的数再加上xcm;
(4)用代数式表示出P3P2和P1P2,再相减即可得出结论.
解:(1)如图所示:
CA=4﹣(﹣1)=4+1=5(cm);
(2)设D表示的数为a,
∵AD=4,
∴|﹣1﹣a|=4,
解得:a=﹣5或3,
∴点D表示的数为﹣5或3;
(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;
(4)P3P2﹣P1P2的值不会随着t的变化而变化,理由如下:
根据题意得:P3P2=(4+4t)﹣(﹣1+t)=5+3t,
P1P2=(﹣1+t)﹣(﹣3﹣2t)=2+3t,
∴P3P2﹣P1P2=(5+3t)﹣(2+3t)=3,
∴P3P2﹣P1P2的值不会随着t的变化而变化.