题目内容
【题目】甲、乙两车从城出发匀速行驶至城在个行驶过程中甲乙两车离开城的距离(单位:千米)与甲车行驶的时间(单位:小时)之间的函数关系如图所示.则下列结论: ①两城相距千米;②乙车比甲车晚出发小时,却早到小时;③乙车出发后小时追上甲车;④在乙车行驶过程中.当甲、乙两车相距千米时,或,其中正确的结论是_________.
【答案】①②
【解析】
观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,进而得出答案.
由图象可知,A.B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,
∴①②都正确;
设甲车离开A城的距离y与t的关系式为y甲=kt,
把(5,300)代入可求得,k=60,
∴y甲=60t,
设乙车离开A城的距离y与t的关系式为y乙=mt+n,
把(1,0)和(4,300)代入可得
解得
∴y乙=100t100,
令y甲=y乙可得:60t=100t100,
解得t=2.5,
即甲、乙两直线的交点横坐标为t=2.5,
此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,
∴③不正确;
令|y甲y乙|=50,可得|60t100t+100|=50,即|10040t|=50,
当10040t=50时,可解得t=,
当10040t=50时,可解得t=,
又当t=时,y甲=50,此时乙还没出发,
当t=时,乙到达B城,y甲=250;
综上可知当t的值为或或或t=时,两车相距50千米,
∴④不正确;
综上,正确的有①②,
故答案为:①②
【题目】某校为灾区开展了“献出我们的爱”赈灾捐款活动,九年级(1)班50名同学积极参加了这次赈灾捐款活动,因不慎,表中数据有一处被墨水污染,已无法看清,但已知全班平均每人捐款38元.
捐款(元) | 10 | 15 | 30 | 50 | 60 | |
人数 | 3 | 6 | 11 | 11 | 13 | 6 |
(1)根据以上信息可知,被污染处的数据为 .
(2)该班捐款金额的众数为 ,中位数为 .
(3)如果用九年级(1)班捐款情况作为一个样本,请估计全校2000人中捐款在40元以上(包括40元)的人数是多少?