题目内容
【题目】如图①,在等边三角形ABC中.D是AB边上的动点,以CD为一边,向上作等边三角形EDC.连接AE.
(l)求证:△DBC≌△EAC
(2)试说明AE∥BC的理由.
(3)如图②,当图①中动点D运动到边BA的延长线上时,所作仍为等边三角形,猜想是否仍有AE∥BC?若成立请证明.
【答案】(1)见解析;(2)见解析;(3)仍有AE∥BC,理由见解析
【解析】试题分析:(1)根据△ABC与△EDC是等边三角形,利用其三边相等和三角相等的关系,求证∠BCD=∠ACE.然后即可证明结论;
(2)根据ACE≌△BCD,可得∠ABC=∠CAE=60°,利用等量代换求证∠CAE=∠ACB即可.
(3)证明△DBC≌△EAC可推出∠EAC=∠ACB,由此可证.
试题解析:(1)∵∠ACB=60, ∠DCE=60,
∴∠BCD=60-∠ACD, ∠ACE=60-∠ACD,
即∠BCD=∠ACE,
在△DBC和△EAC中,
,
∴△DBC≌△EAC(SAS);
(2) ∵△DBC≌△EAC,
∴∠EAC=∠B=60,
又∵∠ACB=60,
∴∠EAC=∠ACB,
∴AE∥BC;
(3)仍有AE∥BC,
∵△ABC,△EDC都为等边三角形,
∴BC=AC, DC=CE, ∠BCA=∠DCE=60,
∴∠BCA+∠ACD=∠DCE+∠ACD,
即∠BCD=∠ACE,
在△DBC和△EAC中,
,
∴△DBC和△EAC(SAS),
∴∠EAC=∠B=60,
又∵∠ACB=60,
∴∠EAC=∠ACB,
∴AE∥BC.
练习册系列答案
相关题目