题目内容

【题目】定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算.
比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5
(1)求3⊕(﹣2)的值;
(2)若3⊕x的值小于16,求x的取值范围,并在数轴上表示出来.

【答案】解:(1)∵a⊕b=a(a﹣b)+1,
∴3⊕(﹣2)=3(3+2)+1=3×5+1=16;
(2)∵a⊕b=a(a﹣b)+1,
∴3⊕x=3(3+x)+1=10﹣3x.
∵3⊕x的值小于16,
∴10﹣3x<16,解得x>﹣2.
在数轴上表示为:

【解析】(1)根据题意得出有理数混合运算的式子,再求出其值即可;
(2)先得出有理数混合运算的式子,再根据3⊕x的值小于16求出x的取值范围,并在数轴上表示出来即可.
【考点精析】通过灵活运用不等式的解集在数轴上的表示和一元一次不等式的解法,掌握不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈;步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1(特别要注意不等号方向改变的问题)即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网