题目内容
【题目】定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算.
比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5
(1)求3⊕(﹣2)的值;
(2)若3⊕x的值小于16,求x的取值范围,并在数轴上表示出来.
【答案】解:(1)∵a⊕b=a(a﹣b)+1,
∴3⊕(﹣2)=3(3+2)+1=3×5+1=16;
(2)∵a⊕b=a(a﹣b)+1,
∴3⊕x=3(3+x)+1=10﹣3x.
∵3⊕x的值小于16,
∴10﹣3x<16,解得x>﹣2.
在数轴上表示为:
【解析】(1)根据题意得出有理数混合运算的式子,再求出其值即可;
(2)先得出有理数混合运算的式子,再根据3⊕x的值小于16求出x的取值范围,并在数轴上表示出来即可.
【考点精析】通过灵活运用不等式的解集在数轴上的表示和一元一次不等式的解法,掌握不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈;步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1(特别要注意不等号方向改变的问题)即可以解答此题.
【题目】某手机专卖店销售A,B两种型号的手机,如表是近两周的销售情况:
销售时段 | 销售数量 | 销售利润 | |
A型 | B型 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3000元 |
(1)求每台A型手机和B型手机的销售利润;
(2)该手机专卖店计划一次购进两种型号的手机共100台,其中A型号手机的进货量不超过B型号手机进货量的2倍.设购进A型号手机x台,这100台手机的销售总利润为y元.
①求y关于x的函数表达式;
②该商店购进A型号和B型号手机各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型号手机的出厂价提高a(0<a<100)元,对B型号手机的出厂价下降a(0<a<100)元,且限定该手机专卖店至少购进A型号手机20台.若该手机专卖店保持两种手机的售价不变,请根据以上信息及(2)中条件,设计出使这100台手机销售总利润最大的进货方案.