题目内容
如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.
(1) 求b,c的值。
(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由.
(3) 如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.
(1) ;(2)点P坐标为(,),最大=;(3) (,) .
解析试题分析:(1)将A、B两点坐标代入即可求出;
(2)假设存在一点P(x,),则△PBC的面积可表示为.从而可求出△PBC的面积最大值及点P的坐标;
(3)根据题意易证,所以,当OE最小时,△OEF面积取得最小值,点E在线段BC上, 所以当OE⊥BC时,OE最小此时点E是BC中点,因此 E(,) .
试题解析:(1) b=-2,c=" 3"
(2)存在。理由如下:
设P点
∵
当时, ∴最大=
当时,
∴点P坐标为(,)
(3)∵∴,而, ,
∴, ∴
∴
∴当最小时,面积取得最小值.
∵点在线段上, ∴当时,最小.
此时点E是BC中点
∴ (,).
练习册系列答案
相关题目
中秋节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.
九(1)班数学建模兴趣小组根据调查,整理出第x天()的捕捞与销售的相关信息如下:
鲜鱼销售单价(元/kg) | 20 |
单位捕捞成本(元/kg) | |
捕捞量(kg) | 950-10x |
(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(元)之间的函数关系式;(当天收入=日销售额日捕捞成本)
(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?