题目内容
【题目】如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为( )
A. 255054 B. 255064 C. 250554 D. 255024
【答案】D
【解析】
由(2n+1)2﹣(2n﹣1)2=8n≤2017,解得n≤252,可得在不超过2017的正整数中,“和谐数”共有252个,依此列式计算即可求解.
由(2n+1)2﹣(2n﹣1)2=8n≤2017,解得:n≤252,则在不超过2017的正整数中,所有的“和谐数”之和为32﹣12+52﹣32+…+5052﹣5032=5052﹣12=255024.
故选D.
练习册系列答案
相关题目