题目内容

【题目】已知等腰RtABC中,∠BAC=90°.点D从点B出发沿射线BC移动,以AD为腰作等腰RtADE,DAE=90°.连接CE.

(1)如图,求证:△ACE≌△ABD;

(2)点D运动时,∠BCE的度数是否发生变化?若不变化,求它的度数;若变化,说明理由;

3)若AC=,当CD=1时,请求出DE的长.

【答案】1见解析;(2)90°;(3)DE的长为

【解析】试题分析:(1)由△ABC和△ADE都是等腰Rt△可得,AB=AC,AD=AE,∠BAC=∠DAE=90°,则有∠BAD=∠CAE,从而可证到△ACE≌△ABD;

(2)由△ACE≌△ABD可得∠ACE=∠ABD=45°,从而得到∠BCE=∠BCA+∠ACE=90°;

(3)可分点D在线段BC上时(如图1)和点D在线段BC延长线上时(如图2)两种情况讨论,在Rt△ABC中运用勾股定理可求出BC,从而得到BD,由△ACE≌△ABD可得CE=BD,在Rt△DCE中运用勾股定理就可求出DE.

试题解析(1)∵△ABC和△ADE都是等腰Rt△,

∴AB=AC,AD=AE,∠BAC=∠DAE=90°,

∴∠BAD=∠CAE,

在△ACE和△ABD中,

∴△ACE≌△ABD;

(2)∵△ACE≌△ABD,

∴∠ACE=∠ABD=45°,

∴∠BCE=∠BCA+∠ACE=45°+45°=90°;

∴∠BCE的度数不变,为90°;

(3)①点D在线段BC上时,如图1,

∵AB=AC=,∠BAC=90°,

∴BC=

∵CD=1,

∴BD=﹣1,

∵△ACE≌△ABD,

∴CE=BD=﹣1.

∵∠BCE=90°,

∴DE=

②点D在线段BC延长线上时,如图2,

∵AB=AC=,∠BAC=90°,

∴BC=

∵CD=1,

∴BD=+1,

∵△ACE≌△ABD,

∴CE=BD=+1,

∵∠BCE=90°,

∴∠ECD=90°,

∴DE=

综上所述:DE的长为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网