题目内容

已知:用两个边长为3全等的等边三角形△ABC和△ACD拼成菱形ABCD且,把一个含60°的三角尺与这个菱形叠合;如果使三角尺60°的顶点与点A重合,两边分别与AB、AC重合.将三角尺绕A点按逆时针方向旋转(旋转角小于60°).

(1)当三角尺的两边与菱形的两边BC、CD相交于点E、F.
①BE、CF有何数量关系,并证明你的结论.
②接EF,求△CEF面积的最大值.
(2)连接BD,在旋转过程中三角尺的两边分别与BD相交于点M、N,是否存在以BM、MN、ND为边的直角三角形?若存在,求BM的值;若不存在,请说明理由.
(1)∵△ABC和△ACD为等边三角形,
∴∠B=∠ACD=60°,∠BAC=60°,AB=AC,
又∵∠EAF=60°,且∠BAE=∠BAC-∠AEC=60°-∠AEC,∠CAF=∠EAF-∠AEC=60°-∠AEC,
∴∠BAE=∠CAF,
又∵在△ABE和△ACF中,
∠BAE=∠CAF
AB=AC
∠B=∠ACF

∴△ABE≌△ACF(ASA),
∴BE=CF;
(2)∵△ABE≌△ACF,
∴S△ACF=S△ABE,AE=AF,
又∵等边△ABC的边长为3,且S四边形AECF=S△AEC+S△ACF,S△ABC=S△AEC+S△ABE
∴S四边形AECF=S△ABC=
1
2
×3×
3
3
2
=
9
3
4

∴S△ECF=S四边形AECF-S△AEF=S△ABC-S△AEF=
9
3
4
-S△AEF
又∵∠EAF=60°,AE=AF,
∴△AEF为等边三角形,
∴三角尺运动过程中,当AE⊥BC时,S△AEF最小,S△ECF最大,
∴当AE⊥BC时,AE=
3
3
2
,S△AEF=
1
2
×
9
4
×
3
3
2
=
27
3
16

则S△ECF=
9
3
4
-S△AEF
9
3
4
-
27
3
16
=
9
3
16

(3)将△ABM绕点A逆时针旋转120°得到△ADP,其中AM=AP,AB=AD,BM=PD,
∵△ADP≌△ABM,
∴∠PAD=∠BAM,
又∵∠EAF=60°,∠CAD=60°,∠EAC=∠EAF-∠FAC=60°-∠FAC,
∴∠DAF=∠CAD-∠FAC=60°-∠FAC,
∴∠EAC=∠DAF,
∴∠PAN=∠PAD+∠DAF=∠BAM+∠EAC=∠BAC=60°,
又∵在△AMN和△APN中,
AM=AP
∠MAN=∠PAN
AN=AN

∴△AMN≌△APN(SAS),
∴MN=PN,
又∵在△PND中,MN=PN,BM=PD,
∴△PND即为以MN,BM,ND为边的三角形,
易知∠PDN=60°,
所以△PND为直角三角形的情况分为两种:
①∠PND=90°,如图4所示,
∵Rt△PND中,∠PDN=60°且BD=3
3

∴ND=
1
2
PD,PN=
3
2
PD,
则BD=BM+MN+ND=PD+PN+ND,即3
3
=PD+
1
2
PD+
3
2
PD,
则BM=PD=3
3
-3;

②∠NPD=90°,如图5所示,
∵Rt△PND中,∠PDN=60°且BD=3
3

∴ND=2PD,PN=
3
PD,
∴BD=BM+MN+ND=PD+PN+ND,即3
3
=PD+2PD+
3
PD,
则BM=PD=
3
3
-3
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网