题目内容
如图所示,边长为a的两个正方形,其中一个正方形的一个顶点恰巧在另一个正方形的中心上,则它们重叠部分(阴影部分)的面积为
a2
a2.
1 |
4 |
1 |
4 |
分析:根据正方形性质得出∠ODM=∠OCN=45°,OD=OC,∠DOC=∠NOM=90°,求出∠DOM=∠CON,证△DOM≌△CON(ASA),得出△DOM的面积和△CON的面积相等,推出阴影部分MONC的面积等于△COD的面积,即可求出答案.
解答:解:
∵四边形ABCD和四边形OEFG是正方形,
∴∠ODM=∠OCN=45°,OD=OC,∠DOC=∠NOM=90°,
∴∠DOC-∠MOC=∠NOM-∠MOC,
∴∠DOM=∠CON,
在△DOM和△CON中
,
∴△DOM≌△CON(ASA),
∴△DOM的面积和△CON的面积相等,
即阴影部分MONC的面积等于△COD的面积,
∵△COD的面积是
A2,
∴阴影部分的面积是
a2,
故答案为:
a2.
∵四边形ABCD和四边形OEFG是正方形,
∴∠ODM=∠OCN=45°,OD=OC,∠DOC=∠NOM=90°,
∴∠DOC-∠MOC=∠NOM-∠MOC,
∴∠DOM=∠CON,
在△DOM和△CON中
|
∴△DOM≌△CON(ASA),
∴△DOM的面积和△CON的面积相等,
即阴影部分MONC的面积等于△COD的面积,
∵△COD的面积是
1 |
4 |
∴阴影部分的面积是
1 |
4 |
故答案为:
1 |
4 |
点评:本题考查了正方形性质,全等三角形的性质和判定的应用,关键是求出△DOM的面积和△CON的面积相等.
练习册系列答案
相关题目
如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则tan∠AED的值等于( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|