题目内容
【题目】如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB∥x轴,BC∥y轴,点C在x轴上,则△ABC的面积为_____.
【答案】1.5
【解析】
作AE⊥x轴于E,BF⊥x轴于F,延长BA交y轴于点D,如图,根据反比例函数比例系数k的几何意义得S矩形AEOD=1,S矩形BFOD=4,于是得到S矩形AEFB=3,然后根据矩形的性质和三角形面积公式易得S△ABC=S△FAB=1.5.
解:作AE⊥x轴于E,BF⊥x轴于F,延长BA交y轴于点D,如图,
∵AB∥x轴,
∴S矩形AEOD=1,S矩形BFOD=4,
∴S矩形AEFB=41=3,
∴S△FAB=1.5,
∴S△ABC=S△FAB=1.5.
故答案为1.5.
练习册系列答案
相关题目