题目内容

【题目】如图,的直径,点是圆上的两点,且平分,过点延长线的垂线,垂足为.若的半径为,则图中阴影部分的面积是________

【答案】

【解析】

连接OT、OD、过OOM⊥ADM,得到矩形OMCT,求出OM,求出∠OAM,求出∠AOT,求出OT∥AC,得出PC是圆的切线,得出等边三角形AOD,求出∠AOD,求出∠DOT,求出∠DTC=∠CAT=30°,求出DC,求出梯形OTCD的面积和扇形OTD的面积.相减即可求出答案.

解:连接OT、OD、DT,过OOM⊥ADM,

∵OA=OT,AT平分∠BAC,

∴∠OTA=∠OAT,∠BAT=∠CAT,

∴∠OTA=∠CAT,

∴OT∥AC,

∵PC⊥AC,

∴OT⊥PC,

∵OT为半径,

∴PC是⊙O的切线,

∵OM⊥AC,AC⊥PC,OT⊥PC,

∴∠OMC=∠MCT=∠OTC=90°,

∴四边形OMCT是矩形,

∴OM=TC=

∵OA=2,

∴sin∠OAM=

∴∠OAM=60°,

∴∠AOM=30°

∵AC∥OT,

∴∠AOT=180°-∠OAM=120°,

∵∠OAM=60°,OA=OD,

∴△OAD是等边三角形,

∴∠AOD=60°,

∴∠TOD=120°-60°=60°,

∵PC切⊙OT,

∴∠DTC=∠CAT=∠BAC=30°,

∴tan30°==

∴DC=1,

∴阴影部分的面积是S梯形OTCD-S扇形OTD=×(2+1)×-=

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网