题目内容
如图,BD是?ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.求证:四边形DEBF为平行四边形.
解:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠CDB=∠ABD,
∵DF平分∠CDB,BE平分∠ABD,
∴∠FDB=∠CDB,∠EBD=∠ABD,
∴∠FDB=∠EBD,
∴DF∥BE,
∵AD∥BC,即ED∥BF,
∴四边形DEBF是平行四边形.
分析:根据平行四边形性质和角平分线定义求出∠FDB=∠EBD,推出DF∥BE,根据平行四边形的判定判断即可.
点评:本题考查了角平分线定义,平行四边形的性质和判定等的应用,关键是推出DF∥BE,主要检查学生能否运用定理进行推理,题型较好,难度适中.
∴AD∥BC,AB∥CD,
∴∠CDB=∠ABD,
∵DF平分∠CDB,BE平分∠ABD,
∴∠FDB=∠CDB,∠EBD=∠ABD,
∴∠FDB=∠EBD,
∴DF∥BE,
∵AD∥BC,即ED∥BF,
∴四边形DEBF是平行四边形.
分析:根据平行四边形性质和角平分线定义求出∠FDB=∠EBD,推出DF∥BE,根据平行四边形的判定判断即可.
点评:本题考查了角平分线定义,平行四边形的性质和判定等的应用,关键是推出DF∥BE,主要检查学生能否运用定理进行推理,题型较好,难度适中.
练习册系列答案
相关题目