题目内容
如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴、y轴正半轴交于点M、N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC边落在x轴的正半轴上,点A恰好落在线段MN上,如图2,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB、AC分别与线段MN交于点E、F,在△ABC平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s),△PEF的面积为S(cm2).(1)求等边△ABC的边长;
(2)当点P在线段BA上运动时,求S与t的函数关系式,并写出自变量t的取值范围;
(3)点P沿折线B→A→C运动的过程中,是否在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_ST/images0.png)
【答案】分析:(1)根据,∠OMN=30°和△ABC为等边三角形,求证△OAM为直角三角形,然后即可得出答案.
(2)根据OM=6cm,∠OMN=30°,利用勾股定理求出MN和ON的长,再根据△OMN∽△BEM,利用其对应边成比例求出BE、PE,然后利用三角形面积公式即可求得答案.
(3)△PEF为等腰三角形,求出t的值,如果在0<t<3这个范围内就存在,否则就不存在.
解答:解:(1)∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=6cm,∠OMN=30°,
∴∠ONM=60°,
∵△ABC为等边三角形
∴∠AOC=60°,∠NOA=30°
∴OA⊥MN,即△OAM为直角三角形,
∴OA=
OM=
×6=3.
(2)∵OM=6cm,∠OMN=30°,
∴ON=2
,MN=4
.
∵△OMN∽△BEM,
∴
=
,
∴
=
,
BE=
,
当点P在BE上时,
PE=BE-PB=
-2t=
,
∵∠A=60°,∠AFE=30°,
∴EF=
AE=
(3-BE)=
(3-
)=
t,
∴△PEF的面积S=
×EF×PE=
×
t×
,
即S=
=-
(0<t<
);
当点P在AE上时,PE=PB-BE=2t-
=
,
∵∠A=60°,∠AFE=30°,
∴EF=
AE=
(3-BE)=
(3-
)=
t,
∴△PEF的面积S=
×EF×PE=
×
t×
,
即S=
=
(
<t≤3);
(3)存在,有三种情况:
①当点P在线段AB上时,
点P在AB上运动的时间为
s,
∵△PEF为等腰三角形,∠PEF=90°,![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/images38.png)
∴PE=EF,
∵∠A=60°,∠AFE=30°,
∴EF=
AE=
(3-BE)=
(3-
)=
t,
∴
=
t或
=
t,
解得t=
或
>
(故舍去),
②当点P在AF上时,
若PE=PF时,点P为EF的垂直平分线与AC的交点,
此时P为直角三角形PEF斜边AF的中点,
∴PF=AP=2t-3,
∵点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,
∴0<t<3,
在直角三角形中,cos30°=
=
=
,
解得:t=2,
若FE=FP,
AF=
=
=t,
则t-(2t-3)=
t,
解得:t=12-6
;
③当PE=EF,P在AE上时无解,
综上,存在t值为
或12-6
或2时,△PEF为等腰三角形.
点评:此题涉及到含30度角的直角三角形、三角形的面积,相似三角形的判定与性质,勾股定理等知识点,综合性强,难度较大,尤其是动点问题,给此题增加了一定的难度,因此此题属于难题.
(2)根据OM=6cm,∠OMN=30°,利用勾股定理求出MN和ON的长,再根据△OMN∽△BEM,利用其对应边成比例求出BE、PE,然后利用三角形面积公式即可求得答案.
(3)△PEF为等腰三角形,求出t的值,如果在0<t<3这个范围内就存在,否则就不存在.
解答:解:(1)∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=6cm,∠OMN=30°,
∴∠ONM=60°,
∵△ABC为等边三角形
∴∠AOC=60°,∠NOA=30°
∴OA⊥MN,即△OAM为直角三角形,
∴OA=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/1.png)
(2)∵OM=6cm,∠OMN=30°,
∴ON=2
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/3.png)
∵△OMN∽△BEM,
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/5.png)
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/7.png)
BE=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/8.png)
当点P在BE上时,
PE=BE-PB=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/10.png)
∵∠A=60°,∠AFE=30°,
∴EF=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/15.png)
∴△PEF的面积S=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/19.png)
即S=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/22.png)
当点P在AE上时,PE=PB-BE=2t-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/24.png)
∵∠A=60°,∠AFE=30°,
∴EF=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/29.png)
∴△PEF的面积S=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/32.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/33.png)
即S=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/34.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/35.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/36.png)
(3)存在,有三种情况:
①当点P在线段AB上时,
点P在AB上运动的时间为
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/37.png)
∵△PEF为等腰三角形,∠PEF=90°,
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/images38.png)
∴PE=EF,
∵∠A=60°,∠AFE=30°,
∴EF=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/38.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/39.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/40.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/41.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/42.png)
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/43.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/44.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/45.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/46.png)
解得t=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/47.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/48.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/49.png)
②当点P在AF上时,
若PE=PF时,点P为EF的垂直平分线与AC的交点,
此时P为直角三角形PEF斜边AF的中点,
∴PF=AP=2t-3,
∵点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,
∴0<t<3,
在直角三角形中,cos30°=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/50.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/51.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/52.png)
解得:t=2,
若FE=FP,
AF=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/53.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/54.png)
则t-(2t-3)=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/55.png)
解得:t=12-6
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/56.png)
③当PE=EF,P在AE上时无解,
综上,存在t值为
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/57.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022164040524629640/SYS201310221640405246296025_DA/58.png)
点评:此题涉及到含30度角的直角三角形、三角形的面积,相似三角形的判定与性质,勾股定理等知识点,综合性强,难度较大,尤其是动点问题,给此题增加了一定的难度,因此此题属于难题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目