题目内容
【题目】如图,反比例函数y=(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A、B,四边形OAMB的面积为6.
(1)求k的值;
(2)点P在(1)的反比例函数y=(x>0)的图象上,若点P的横坐标为3,在x轴上有一点D(4,0),若在直线y=x上有动点C,构成△PDC,其面积为3,请写出C点的坐标;
(3)若∠EPF=90°,其两边分别为与x轴正半轴,直线y=x交于点E、F,问是否存在点E,使PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.
【答案】(1)k=6;(2)满足条件的点C坐标为或;(3)存在,(4,0)和(6,0)
【解析】
(1)过点M作MC⊥x轴于点C,MD⊥y轴于点D,根据AAS证明△AMC≌△BMD,那么S四边形OCMD=S四边形OAMB=6,根据反比例函数比例系数k的几何意义得出k=6;
(2)如图1-1中,延长DP交OC于点E,作DH⊥OC于H.利用三角形的面积公式求出EC的长即可解决问题;
(3)先根据反比例函数图象上点的坐标特征求得点P的坐标为(3,2).再分两种情况进行讨论:①如图2,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.根据AAS证明△PGE≌△FHP,进而求出E点坐标;②如图3,同理求出E点坐标.
解:(1)如图1,过点M作MC⊥x轴于点C,MD⊥y轴于点D,
则∠MCA=∠MDB=90°,∠AMC=∠BMD,MC=MD,
∴△AMC≌△BMD,
∴S四边形OCMD=S四边形OAMB=6,
∴k=6;
(2)如图1﹣1中,延长DP交OC于点E,作DH⊥OC于H,作PJ⊥OC于J,
∵D(4,0),P(3,2),
∴直线PD的解析式为y=﹣2x+8,
由,解得.
∴E(,),
在Rt△ODH中,∵∠DOH=45°,OD=4,
∴DH=2,同法可得PJ=
∵ECDH﹣ECPJ=3,
∴EC=2,
∴满足条件的点C坐标为(,)或(,).
(3)存在点E,使得PE=PF.
由题意,得点P的坐标为(3,2).
①如图2,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.
∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,
∴△PGE≌△FHP,
∴PG=FH=2,FK=OK=3﹣2=1,GE=HP=2﹣1=1,
∴OE=OG+GE=3+1=4,
∴E(4,0);
②如图3,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.
∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,
∴△PGE≌△FHP,
∴PG=FH=2,FK=OK=3+2=5,GE=HP=5﹣2=3,
∴OE=OG+GE=3+3=6,
∴E(6,0),
故答案为(4,0)和(6,0).