题目内容
【题目】如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=(x<0)交于点P(﹣1,n),且F是PE的中点.
(1)求直线l的解析式;
(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?
【答案】(1)y=﹣2x+2;(2)a=-2.
【解析】
试题分析:(1)先由y=,求出点P的坐标,再根据F为PE中点,求出F的坐标,把P,F的坐标代入求出直线l的解析式;
(2)过P作PD⊥AB,垂足为点D,由A点的纵坐标为﹣2a+2,B点的纵坐标为,D点的纵坐标为4,列出方程求解即可.
试题解析:(1)由P(﹣1,n)在y=上,得n=4,
∴P(﹣1,4),
∵F为PE中点,
∴OF=n=2,
∴F(0,2),
又∵P,F在y=kx+b上,
∴,解得.
∴直线l的解析式为:y=﹣2x+2.
(2)如图,过P作PD⊥AB,垂足为点D,
∵PA=PB,
∴点D为AB的中点,
又由题意知A点的纵坐标为﹣2a+2,B点的纵坐标为,D点的纵坐标为4,
∴得方程﹣2a+2=4×2,
解得=﹣2,=﹣1(舍去).
∴当a=﹣2时,PA=PB.
练习册系列答案
相关题目