题目内容

【题目】如图,AB为⊙O的直径,D为⊙O上一点,DE是⊙O的切线,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F.

(1)求证:AD平分∠BAC;

(2)若DE=3,⊙O的半径为5,求BF的长.

【答案】(1)证明见解析;(2)BF=

【解析】

试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;

(2)在Rt△ABC中,运用勾股定理可将爱那个AC的长求出,运用切割线定理可将AE的长求出,根据△AED∽△ABF,可将BF的长求出

试题解析:(1)连接OD,BC,OD与BC相交于点G,

∵D是弧BC的中点,

∴OD垂直平分BC,

∵AB为⊙O的直径,

∴AC⊥BC,

∴OD∥AE.

∵DE⊥AC,

∴OD⊥DE,

∵OD为⊙O的半径,

∴DE是⊙O的切线.

(2)由(1)知:OD⊥BC,AC⊥BC,DE⊥AC,

∴四边形DECG为矩形,

∴CG=DE=3,

∴BC=6.

∵⊙O的半径为5,

∴AB=10,

∴AC==8,

由(1)知:DE为⊙O的切线,

∴DE2=ECEA,即32=(EA﹣8)EA,

解得:AE=9.

∵D为弧BC的中点,

∴∠EAD=∠FAB,

∵BF切⊙O于B,

∴∠FBA=90°.

又∵DE⊥AC于E,

∴∠E=90°,

∴∠FBA=∠E,

∴△AED∽△ABF,

,

∴BF=

考点:1.切线的判定,2.勾股定理,3.圆周角定理,4.相似三角形的判定与性质

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网