题目内容

如图,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD内.若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四边形AEPH的面积为5cm2,则四边形PFCG的面积为(  )
分析:首先连接AP,CP.把该四边形分解为三角形进行解答.设△AHP在AH边上的高为x,△AEP在AE边上的高为y.得出AH=CF,AE=CG.然后得出S四边形AEPH=S△AHP+S△AEP.根据题意可求解.
解答:解:连接AP,CP,设△AHP在AH边上的高为x,△AEP在AE边上的高为y.
则△CFP在CF边上的高为4-x,△CGP在CG边上的高为6-y.
∵AH=CF=2cm,AE=CG=3cm,
∴S四边形AEPH=S△AHP+S△AEP
=AH×x×
1
2
+AE×y×
1
2

=2x•
1
2
+3y×
1
2

=5cm2
2x+3y=10,
S四边形PFCG=S△CGP+S△CFP
=CF×(4-x)×
1
2
+CG×(6-y)×
1
2

=(26-2x-3y)×
1
2

=(26-10)×
1
2

=8cm2
故选D.
点评:本题考查了对矩形的性质,三角形的面积等知识点,把四边形的面积分解为三角形的面积来求解是解此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网