题目内容
若一次函数y=3x+b经过点A(1,7),则其图象与两坐标轴围成的图形面积为
.
8 |
3 |
8 |
3 |
分析:先把点(1,7)代入求出b的值,故可得出一次函数的解析式,再令y=0求出x的值,利用三角形的面积公式即可得出结论.
解答:解:∵一次函数y=3x+b经过点A(1,7),
∴7=3+b,解得b=4,
∴一次函数的解析式为y=3x+4,与y轴的交点为(0,4),
当y=0时,x=-
,
∴一次函数与x轴的交点为(-
,0),
∴其图象与两坐标轴围成的图形面积=
×4×
=
.
故答案为:
.
∴7=3+b,解得b=4,
∴一次函数的解析式为y=3x+4,与y轴的交点为(0,4),
当y=0时,x=-
4 |
3 |
∴一次函数与x轴的交点为(-
4 |
3 |
∴其图象与两坐标轴围成的图形面积=
1 |
2 |
4 |
3 |
8 |
3 |
故答案为:
8 |
3 |
点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
练习册系列答案
相关题目