题目内容
【题目】已知二次函数y=ax2+bx+c,当x取1时,函数有最大值为3,且函数的图象经过点(-2,0)。
(1)求这个二次函数的解析式;
(2)根据图象直接写出函数值y大于零时x的取值范围
【答案】
(1)解:依题可设二次函数解析式为:y=a(x1)2+3,
∵(-2,0)在函数解析式上,
∴a(21)2+3=0,
∴a=.
∴二次函数的解析式为: y=(x1)2+3.
(2)解:当 y=0 时,即(x1)2+3=0,
∴ x1=2,x2=4,
∵抛物线开口向下,
∴当 y>0 时,x 的取值范围是: -2<x<4 .
【解析】(1)依题可设二次函数解析式为:y=a(x1)2+3,将(-2,0)代入函数解析式即可求出a的值,从而求出二次函数的解析式为.
(2)当 y=0 即可求出 x1=2,x2=4,再由抛物线开口向下,得出当 y>0 时,x 的取值范围 -2<x<4.
【题目】问题探究:小刚根据学习函数的经验,对函数y=﹣2|x|+5的图象和性质进行了探究.下面是小刚的探究过程,请你解决相关问题:
(Ⅰ)在函数y=﹣2|x|+5中,自变量x可以是任意实数;
(Ⅱ)如表y与x的几组对应值:
X | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | ﹣1 | 1 | 3 | 5 | 3 | 1 | ﹣1 | ﹣3 | … |
(Ⅲ)如图,在平面直角坐标系中,描出以表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:
(1)若A(m,﹣11),B(8,﹣11)为该函数图象上不同的两点,则m= ;
(2)观察函数y=﹣2|x|+5的图象,写出该图象的一条性质 .
(3)直线y=kx+b(k≠0)经过点(﹣1,3)及点(4,﹣3),则当kx+b<﹣2|x|+5时,自变量x的取值范围是 .
【题目】随着“西成高铁”的开通,对于加强关中一天水经济区与成渝经济区的交流合作,促进区域经济发展和提高人民出行质量,具有十分重要的意义.成都某单位组织优秀员工利用周末乘坐“西成高铁”到西安观光旅游,计划游览着名景点“大唐芙蓉园”.已知该景区团体票价格设置如下:
人数/人 | 10人以内(含10人) | 超过10人但不超过30人的部分 | 超过30人的部分 |
单价(元/张) | 120 | 100 | 90 |
(1)求团体票总费用y(元)与游览人数x(人)之间的关系式;
(2)若该单位购买团体票共花费4100元,且所有人都购买了门票,那么该单位共有多少人游览了“大唐芙蓉园”?