题目内容

【题目】如图,抛物线y=﹣x2+3x+4与x轴交于点A,B,与y轴交于点C,P(m,n)为第一象限内抛物线上的一点,点D的坐标为(0,6).

(1)OB=_________,抛物线的顶点坐标为_________________

(2)当n=4时,求点P关于直线BC的对称点P′的坐标;

(3)是否存在直线PD,使直线PD所对应的一次函数随x的增大而增大?若存在,直接写出m的取值范围;若不存在,请说明理由.

【答案】(1)4,(;(2)(0,1)(3)1<m<2.

【解析】

试题分析:(1)当y=0时,即﹣x2+3x+4=0,解得:x1=4,x2=﹣1,∴点A(﹣1,0)点B(4,0),∴OB=4,y=﹣x2+3x+4=,∴抛物线的顶点坐标为(),故答案为:4,().

(2)如图,连接CP,CP′,

n=4时,﹣m2+3m+4=4,解得:m1=3,m2=0(舍去),∴这时P点的坐标为(3,4),∵OC=4,∴CP∥x轴,CP=3,∵点C的坐标为(0,4),∴OB=OC=4,∴∠OCB=45°=∠BCP,∴点P′在y轴上,且CP′=CP=3,∴P′的坐标为(0,1).

(3)存在,∵点D的坐标为(0,6),∴当y=6时,﹣x2+3x+4=6,解得:x1=1,x2=2,∵直线PD所对应的一次函数随x的增大而增大,∴一次函数的图象一定经过一、三象限,∴1<m<2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网