题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=∠BDE.
(1)求证:AC是⊙O的切线;
(2)连接OC交BE于点F,若,求的值.
【答案】(1)见解析;(2).
【解析】
试题分析:(1)连接OE,证得OE⊥AC即可确定AC是切线;
(2)根据OE∥BC,分别得到△AOE∽△ACB和△OEF∽△CBF,利用相似三角形对应边的比相等找到中间比即可求解.
解:(1)证明:连接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵∠ACB=90°,
∴∠CBE+∠BEC=90°,
∵BD为⊙O的直径,
∴∠BED=90°,
∴∠DBE+∠BDE=90°,
∴∠CBE=∠DBE,
∴∠CBE=∠OEB,
∴OE∥BC,
∴∠OEA=∠ACB=90°,
即OE⊥AC,
∴AC为⊙O的切线;
(2)∵OE∥BC,∴△AOE∽△ABC,
∴,
∵,
∴,
∴,
∵OE∥BC,
∴△OEF∽△CBF,
∴.
练习册系列答案
相关题目